Tropicalization of Classical Moduli Spaces
نویسندگان
چکیده
The image of the complement of a hyperplane arrangement under a monomial map can be tropicalized combinatorially using matroid theory. We apply this to classical moduli spaces that are associated with complex reflection arrangements. Starting from modular curves, we visit the Segre cubic, the Igusa quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our primary example is the Burkhardt quartic, whose tropicalization is a 3-dimensional fan in 39-dimensional space. This effectuates a synthesis of concrete and abstract approaches to tropical moduli of genus 2 curves.
منابع مشابه
The Tropicalization of the Moduli Space of Curves
We show that the skeleton of the Deligne-MumfordKnudsen moduli stack of stable curves is naturally identified with the moduli space of extended tropical curves, and that this is compatible with the “naive” set-theoretic tropicalization map. The proof passes through general structure results on the skeleton of a toroidal Deligne-Mumford stack. Furthermore, we construct tautological forgetful, cl...
متن کاملTropical Derivation of Cohomology Ring of Heavy/Light Hassett Spaces
The cohomology of moduli spaces of curves has been extensively studied in classical algebraic geometry. The emergent field of tropical geometry gives new views and combinatorial tools for treating these classical problems. In particular, we study the cohomology of heavy/light Hassett spaces, moduli spaces of heavy/light weighted stable curves, denoted as Mg ,w for a particular genus g and a wei...
متن کاملRealization Spaces for Tropical Fans
We introduce a moduli functor for varieties whose tropicalization realizes a given weighted fan and show that this functor is an algebraic space in general, and is represented by a scheme when the associated toric variety is quasiprojective. We study the geometry of these tropical realization spaces for the matroid fans studied by Ardila and Klivans, and show that the tropical realization space...
متن کاملMaximal Surface Group Representations in Isometry Groups of Classical Hermitian Symmetric Spaces
Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected compon...
متن کاملA dissertation submitted in partial satisfaction of the requirements for
Tropical Geometry by David E Speyer Doctor of Philosophy in Mathematics University of California, Berkeley Professor Bernd Sturmfels, Chair Let K be an algebraically closed field complete with respect to a nonarchimedean valuation v : K∗ → R. The reader should think ofK as the field of Puiseux series, ⋃∞ n=1 C((t )) and v as the map that assigns to a power series the exponent of its lowest degr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics in Computer Science
دوره 8 شماره
صفحات -
تاریخ انتشار 2014